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Abstract

Over the mid-to-upper region of the ductile-to-brittle transition region, transgranular cleavage and ductile tearing
define two competing failure mechanisms in ferritic steel. At metallurgical scales ( <50 um), formation and growth
of the voids driving ductile crack extension likely alter the local stress fields acting on the smaller inclusions that trigger
cleavage fracture. Here we study the effects of void growth on cleavage fracture by modeling discrete cylindrical voids
lying on the crack plane ahead of the crack tip within a small-scale yielding (SSY) boundary layer model. These discrete
voids have a spacing, D, within a highly refined crack-front region. This enables identification of both single void
growth and multiple void growth mechanisms that depend primarily on the initial void porosity, fo. The crack grows
in this model by release of nodal reactions (enforcing zero displacement) along the ligament (symmetry plane) between
the blunted crack tip and closest void when the void obtains a specified critical porosity. This process grows the crack in
discrete increments of size equal to the length of an intervoid ligament. Continued external loading leads to subsequent
void growth and crack extensions through additional node releases. The external loads at the point of each crack exten-
sion define the crack growth resistance (Jg) curves. This enables comparison with conventional Jz—Aa curves obtained
using computational cell (Gurson-Tvergaard) analyses. The Weibull stress model is then employed to quantify the
stress concentration effects on the probability of cleavage fracture. We describe a non-dimensional function, h(j )s
to represent stress concentration effects on the Weibull stress in a convenient framework (J = .J/Da, denotes a non-
dimensional loading for SSY analyses). These /-functions also reflect the increase in volume of material sampled as
the crack grows from the original tip to the first void, the second void, etc. The A-functions vary with material flow
properties, initial porosity (fo), critical porosity (f.), Weibull modulus (m2), and T-stress (7,) or constraint level.
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1. Introduction

A competition between transgranular cleavage and ductile tearing mechanisms characterizes the fracture
behavior of ferritic steels over the temperature driven ductile-to-brittle transition (DBT) region. At low
temperatures in the DBT region, the cleavage mechanism causes particular concern as catastrophic, struc-
tural failure generally occurs without significant plastic deformation. Cleavage fracture exhibits a “weakest
link” phenomenon wherein one (or more) initiation sites at metallurgical scale inclusions trigger unstable
crack extension at the macroscopic scale (Curry and Knott, 1976; Landes and Shaffer, 1980; Wallin et al.,
1984; Lin et al., 1986; Mudry, 1987; Beremin, 1983; Lin et al., 1986). This mechanism invokes a strong sen-
sitivity to the volume of material along the (macroscopic) crack front subjected to high stresses and to dif-
ferences in stress fields that arise from constraint variations (large-scale yielding). As the temperature
increases through the transition region, small amounts of ductile tearing often occur prior to the onset
of cleavage fracture. Ductile tearing pushes the crack front forward which increases the volume of material
sampled at high stress levels and thereby influences the eventual likelihood of failure by cleavage fracture.
The ductile tearing process occurs from the coalescence of growing voids ahead of the crack front. At met-
allurgical scales ( <50 pm), the formation and growth of such voids likely alters the local stress fields acting
on the nearby inclusions that trigger cleavage fracture. Exploratory work by Isacsson et al. (1998) and
Faleskog and Shih (1997) examines these effects on local stress using unit cell-type models.

Predictions of cleavage fracture in test specimens and structural components can be performed success-
fully using modified Weibull stress, or Beremin (Mudry, 1987; Beremin, 1983), micromechanical models.
These models assume a form for the statistical distribution of microcracks present in small, statistically
independent volumes of material located ahead of the crack front with a simple Griffith-type toughness
relationship taken for the microcracks. Each small volume experiences loading from the macroscopic (con-
tinuum) stress field described, for example, by a local value of maximum (tensile) principal stress. A
weighted average of the cumulative failure probability taken over all volumes ahead of a crack front leads
to a relatively simple expression for macroscopic failure probability involving a scalar measure of the crack
front loading, the so-called Weibull stress, ,,. The Weibull stress model includes several parameters: a
Weibull modulus, m, that characterizes the size distribution of microcracks, a Weibull scale parameter,
g, that represents the aggregate microcrack toughness, and often a third parameter to enforce prediction
of a threshold toughness at the micro- and/or macroscale.

Xia and Shih (1996) were among the first to incorporate the effects of prior ductile tearing into the
Weibull stress approach. They employ a computational cell framework to grow a crack under Mode I con-
ditions with a Gurson-Tvergaard (Gurson, 1977; Tvergaard, 1990) constitutive model to simulate cell soft-
ening from void growth. Evaluation of the Weibull stress during crack growth analyses leads to estimates
for the probability of cleavage fracture. Others including Ruggieri and Dodds (1996a,b), Gao et al. (1999),
Xia and Cheng (1997), Neto and Ruggieri (2001) and Kroon (2001) expanded these efforts to couple the
Weibull stress concept (and similar models) with computational cell-type models for ductile growth. These
studies model the material (computational cells) at the crack front as a continuum and neglect any potential
effects of discrete voids ahead of the crack front. Numerical models (Isacsson et al., 1998; Faleskog and
Shih, 1997) of discrete voids suggest that the stress concentrations around these voids will influence
the crack-front stress fields, the associated Weibull stress and there cumulative failure probability
distributions.

Rice and Johnson (1970), McMeeking (1977), Aravas and McMeeking (1985), and Tvergaard and
Hutchinson (1992, 2002) among others, have investigated the growth of discrete void(s) located ahead of
a blunting crack tip. Here we study discrete void growth using analyses similar to those described recently
by Tvergaard and Hutchinson (2002). They analyze the growth behavior of cylindrical voids lying on
the crack plane ahead of the crack tip within a small-scale yielding (SSY) boundary layer model with zero
T-stress. The discrete voids have a spacing, D, along the crack plane of the SSY model within a highly
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refined crack-front region. They describe computational studies focused on the growth histories of the lead-
ing voids nearest the crack front. Their study identifies both single void growth and multiple void growth
mechanisms governed primarily by the initial void porosity, fo. The crack grows in their model by release of
nodal reactions (enforcing zero displacement) along the ligament (symmetry plane) between the voids. The
crack extension occurs when the ligament length between voids reduces to a specified critical size. This pro-
cess grows the crack in discrete increments of size equal to the length of one void ligament. Continued exter-
nal loading reduces subsequent ligaments to critical length with crack extensions through additional node
releases. The external loads (remotely applied K) at the point of each crack extension define the crack
growth resistance (K and Jg) curves. Here, we employ a modified criterion for ductile crack growth where
each void must obtain a critical porosity, f., to trigger the ligament release. This enables comparison of
resistance curves obtained from discrete void models with conventional Jz—Aa curves obtained using com-
putational cell analyses.

The work by Tvergaard and Hutchinson (2002) focuses on void growth behavior and the features of duc-
tile crack growth initiation. They do not examine the potential effects that discrete voids may impose on
cleavage fracture processes in the mid-to-upper region of the DBT. The analyses by Isacsson et al.
(1998) do investigate these effects through an analysis of a single spherical void located within a unit cell.
They provide “correction’ factors to adjust failure probabilities based on isolated computational cells, to
the higher failure probabilities caused by the otherwise neglected stress concentrations near the discrete
voids. Similar to Isacsson et al. (1998), we also employ the Weibull stress model to quantify the stress con-
centration effects on the probability of cleavage fracture. In addition, our analyses adopt the framework
developed by Tvergaard and Hutchinson (2002) to examine the effects of multiple interacting voids and
small amounts of ductile crack growth. Highly refined finite element models enable the development of a
non-dimensional function, A(J), to represent the stress concentration effects on the Weibull stress in a con-
venient framework. Here, J = J /Day denotes a non-dimensional loading parameter for the SSY analyses.
The h-function follows from a comparison of the Weibull stress values for f, > 0 and fo = 0, i.e., h(j ) quan-
tifies the effects of discrete voids on the Weibull stress as a function of external loading,

0£?>0/0£?:0 = h(‘]/DG()v TG/GO»anfm mvE/G()v n, U)' (1)

These functions also reflect the increase in volume of material sampled as the crack grows from the original
tip to the first void, the second void, etc. The correction function permits adjustments to the Weibull stress
values computed from simple analyses which neglect the stress concentrations. The A-functions vary with
material flow properties, initial porosity (fy), critical porosity (f.), Weibull modulus (m), and T-stress (7).

The organization of this paper is as follows. Section 2 reviews very briefly the Weibull stress framework.
Section 3 describes the evolution of Weibull stress values under SSY conditions and includes the effects of
both discrete void stress concentrations and ductile tearing on the Weibull stress. Section 4 summarizes the
finite element procedures and the numerical models adopted throughout this work. Section 5 describes the
void growth history and ductile crack growth results. Section 6 presents key results of the analyses to quan-
tify the effects of discrete voids and ductile tearing on the Weibull stress values and the corresponding
cumulative failure probabilities. Section 7 concludes this paper with a short summary.

2. Weibull stress framework

Experimental testing of ferritic steels over the low-to-mid region of the DBT curve generates macro-
scopic fracture toughness values (K, J.) that exhibit large amounts of scatter (Wallin, 1984). Weakest link
models postulate that the macroscopic cleavage fracture event depends on the failure of a single initiator
(Lin et al., 1986; Wallin, 1984; Wallin et al., 1984). The random distribution of initiators contributes di-
rectly to the observed scatter in experimental fracture toughness values. The volume of highly stressed
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material along the crack front thus plays a key role in the fracture process. The Beremin group (1983) intro-
duced a local fracture parameter, the Weibull stress (a,,), to define a probabilistic scalar measure of crack-
front conditions. The expression for the global cumulative probability of cleavage fracture (Beremin, 1983;
Ruggieri and Dodds, 1996a; Gao and Dodds, 2000) follows as,

o =1-ow |- [ (2) ] = 1- e [-(2)]. .

where the scalar Weibull stress, a,,, is given by,

1 1/m
o, = [70/’/01 dV] . (3)

The Weibull modulus, m, depends on the postulated shape of the probability density function for pre-exist-
ing microcracks at metallurgical inclusions (initiators). The value of m quantifies the degree of “‘scatter”
reflected in the cumulative failure probability distribution. The scale parameter, ¢,, denotes the Weibull
stress value for a cumulative probability of fracture equal to 0.63, P¢(g,, = 0,) = 0.63. Computation of
the Weibull stress follows by integrating the maximum principal stress, o}, over the fracture process zone,
V. This zone consists of the region of plastically deformed crack-front material over which the maximum
principal stress exceeds a multiple (4) of the yield strength o, > Aa.

In previous work, researchers generally assume that 1~ 2, i.e., the material must be yielded and the
stress must reach a sufficiently high level to initiate fracture. Weibull stress values do vary with the choice
of 2, especially for low m values, e.g., m < 12 (see Appendix of Petti and Dodds (2004) for additional dis-
cussion). The Weibull stress definition also includes a normalizing reference volume, ¥V, that provides
dimensional consistency as well as another length-scale associated loosely with the microstructural features
of a material related to the cleavage process (e.g. grain size). The specific value of V| plays a key role in
applications of the Weibull stress model to predict actual values of the macroscopic fracture toughness
using metallurgical scale features which govern m and ¢,,. However, in applications to understand the effects
of constraint loss, for example, across different cracked specimens of the same material, V (as a ““‘material”
property) presumably retains the same value in each case and thus cancels in comparisons of relative
Weibull stress values and relative failure probabilities. Such studies often specify a unit value of V, for con-
venience (Ruggieri and Dodds, 1996a,b).

Numerical computation of the Weibull stress given by Eq. (3) employs standard element-by-element
integration techniques using finite element analyses (see Ruggieri and Dodds (1998) for additional details).
The non-linear finite element model provides the continuum stress strain field in the absence of any local-
ized, discrete features related to the cleavage triggering event, for example, the stress concentration caused
by a sharp microcrack on the order of a few microns in size. Consequently, there exists no correlation be-
tween the size of the finite elements near the crack tip or voids with the value employed for V, or with any
other microstructural length-scale for cleavage (e.g., cracked inclusion size, shape, orientation, spacing,
etc.). The calibrated values of m and g, reflect these microstructure details in the adopted Weibull stress
framework. More specifically, stress fields are not averaged over a prescribed V; for the computation of
g, The finite element solution should provide a mesh invariant, converged value for the integral in Eq.
(3) including voids, which is then scaled by a calibrated value of ¥, when necessary in the application as
noted above.

At a given level of external loading (J or K}), the Weibull stress can be computed with or without a “his-
tory” effect caused by crack-front blunting and crack growth. Computations employing this history effect
use the maximum stress experienced by each material point up to and including the current external load
level. To neglect the history effect, computation of the Weibull stress at each level of loading uses only the
current stresses. For analyses without ductile crack growth, only small differences develop between Weibull
stress values for these two methods—the differences stem from the partial unloading of material behind the
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current position of the peak stress ahead of the blunting crack tip. Use of the maximum stress levels expe-
rienced over the loading history increases the Weibull stress (<1%) over values computed using the current
stresses. Because the Weibull stress increases rapidly with loading for high constraint conditions (SSY con-
ditions or deep-notch C(T) and SE(B) specimens), only minimal differences in failure probability develop
from including or neglecting the history effect. The history effect becomes more pronounced for low con-
straint conditions, i.e., shallow-notch SE(B) specimens and other negative 7-stress geometries. This stems
from the sensitivity of the external loading associated with a given Weibull stress value (i.e., failure prob-
ability) for shallow Weibull stress vs. load trajectories.

Small amounts of ductile crack growth lead to the sampling of additional material volume at high stress
levels at the crack front. Material previously ahead of the crack front now resides behind the front and
experiences inelastic unloading. The Weibull stress values increase steadily with continued loading and
growth when the history effect includes the maximum stresses experienced by the (now) unloaded material
behind the current crack front. In contrast, Weibull stress values computed with the current stresses in-
crease as well, but not at the same rate. Here we use the maximum stresses and thus reflect history effects
to remain consistent with the concept of a cumulative failure probability. Consider the behavior at loading
levels corresponding to steady-state (or near steady-state) crack growth (i.e., a flat, crack growth resistance
curve) in the SSY framework. The plastic zone does not increase further in size—it merely pushes forward
along the crack plane as the crack continues to grow with little or essentially no additional loading. With no
increase in the size of the plastic zone, the Weibull stress remains constant when computed with the current
stresses (no history effect). This implies an associated cumulative failure probability that does not increase
with subsequent ductile crack growth, i.e., the additional volume of material loaded to high stress levels
during ductile growth does not increase the cumulative cleavage failure probability since an equal amount
of material leaves the process zone. Conversely, use of the maximum stresses experienced by the unloaded
material leads to a continual increase of the Weibull stress with crack growth. The cumulative probability
for cleavage fracture — 1.0 in steady growth given the increasingly large volume of material sampled at
high crack-front stress levels. Use of this model assumes that failure by cleavage fracture remains possible
at the analyzed temperature, i.e., the temperature of interest does not reside on the upper shelf where cleav-
age fracture cannot intervene regardless of the amount of sampled material.

Alternate definitions for the Weibull stress have been proposed to incorporate experimental observations
which show a threshold loading below which the probability of fracture remains zero. One such proposal
introduces a threshold value of the principal tensile stress, gy, into the Weibull stress definition in Eq. (3)
(Bakker and Koers, 1991; Ruggieri, 2001), i.e., the integrand in Eq. (3) becomes ¢; — oy,. Calibration of the
oy value for a specific material remains problematic. Previous work (Gao and Dodds, 2000; Petti
and Dodds, 2004, 2005) addresses this issue by introducing a threshold (minimum) Weibull stress value,
0,-min» INt0 the cumulative fracture probability given by Eq. (2). Still other proposed modifications have
introduced plastic strain effects on the microcrack distribution (Kroon, 2001) and temperature/loading rate
dependent Weibull parameters (Petti and Dodds, 2004; Petti and Dodds, 2005). The present work employs
the simple two-parameter, Weibull stress definition in Eq. (3) given the exploratory nature of the study.

3. Discrete void and ductile tearing effects on o),

Plane-strain, SSY conditions produce self-similar fields with amplitudes dependent only on J, or equiv-
alently K; = /EJ /(1 —1?). This leads to the following relationship (Gao and Dodds, 2000; Lei et al., 1998)
coupling the local crack-front conditions quantified by the Weibull stress with a macroscopic measure of
the far-field loading, J (or Kj), i.e.,

" = GBJ?, (4)

—
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where B and % denote the thickness (i.e. crack-front length) and a material dependent constant, respec-
tively. For plane-strain conditions, the stress field and the local J value remain constant at all points along
the crack front. The material constant (%) depends upon the flow properties (E/ay, v, n), Weibull parameters
(m, Vy), and the specified level of T-stress (a high constraint reference condition with 7,; = 0 is most com-
monly adopted). For a model without voids and without ductile tearing, use of the maximum stresses to
compute the Weibull stress leads to a slight increase of ¢ over the loading history (< 1%, depending on
m). After the determination of % for a specific material, temperature, and loading rate, Weibull stress values
follow simply from Eq. (4) for any crack-front length (B). In addition to plane-strain SSY conditions, the
expression in Eq. (4) remains approximately valid for real, through-crack specimens early in the loading
while SSY, T, > 0 conditions prevail along with uniform J over the crack front.

Gao and Dodds (2000) introduced a non-dimensional constraint function, g(M), to characterize the level
of constraint loss as SSY conditions gradually degrade in specimens under increased plastic deformation.
The extension of Eq. (4) follows as

ol = 6BJ;,g(M), (5)

w

where M = bay/J,ye and J,y, denotes a through-thickness average value. The constraint function, g(M),
equals 1.0 for all materials under plane-strain SSY conditions with constant 7, = 0. For a specific config-
uration, e.g. SE(B) with W= 2B and a/W = 0.5, 3D non-linear finite element analyses and Weibull stress
computations define o, as a function of J,,,. With the plane-strain, SSY analyses to compute % (for a spe-
cific material and m value), the g-function value (with respect to M) follows by solving Eq. (5) for g(M) at
each loading level.

Similar to the non-dimensional constraint function, g(M), the proposed function, h(j ), captures the cou-
pled effects of stress concentrations near discrete voids populating the crack-front region and the additional
volume of material sampled during ductile crack growth. With the assumption of 7, = 0 under SSY con-
ditions such that g(M) = 1, the extension of Eq. (4) follows as,

o" = €BJ*h(J), (6)

where J =J /Doy denotes a non-dimensional loading parameter for SSY conditions with D equal to the
(mean) spacing between the discrete voids. The A-functions vary with material flow properties, initial poros-
ity (fp), critical porosity (f.), Weibull modulus (), and T-stress.

For fracture specimens, the coupling of constraint loss, stress concentrations from discrete voids, and
ductile crack growth all influence the Weibull stress. It seems plausible that Egs. (5) and (6) may be com-
bined as

o = €BJ*h(J)g(J), (7)

where g now becomes a function of J to remain consistent with 4(J). Alternatively, both g and / can be
defined as functions of M for fracture specimens. Computation of % and g(J) follows from standard
plane-strain, SSY and fracture specimen analyses (without discrete voids). The A-function follows from
Eq. (7) using ,, vs. Jay, results from the analysis of a fracture specimen which includes discrete voids. When
used as the loading term in Eq. (2), values of the / and g functions other than 1.0 readily influence the fail-
ure probability. Since we only examine plane-strain, SSY conditions in this study, M cannot be employed

(no ligament size, b, exists).

4. Computational procedures and models

Non-linear finite element analyses are performed on highly detailed meshes using the research code
WARP3D (Koppenhoefer et al., 2001). These analyses use a standard Mises constitutive model with J, flow
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theory including the effects of large displacements and finite strains. The uniaxial, stress—strain relationship
has an initially linear region, followed by a power-law hardening region,

i:iforsgso; i:(i) for & > &, (8)
&0 (o) &0 ()

where g, ¢ and n denote the yield stress, yield strain and strain hardening exponent, respectively. Each

finite element model consists of standard three-dimensional 8-node elements with 2 x 2 x 2 Gauss quadra-

ture. A domain integral procedure (Moran and Shih, 1987) computes J-integral values to insure agreement

with K-values imposed on the remote boundary.

4.1. Conventional plane-strain SSY model

This study employs a boundary layer model (Larsson and Carlsson, 1973; Rice, 1968) wherein the plastic
zone remains small compared to the radius of the outer boundary. The finite element mesh shown in Fig. la
contains approximately 2800 elements with one element layer through the thickness. The setting of w = 0 at
all model nodes enforces the plane-strain condition. Nodal displacements that follow a prescribed Mode 1
and T-stress field applied to the outer boundary serve to load the model (Anderson, 1995).

_ 12
u(R,0) wa%cos (g) (3 —4v —cos0) + T(,(1 EV )Rcos 0, 9)
(R, 0) = w, lzﬁnsin (§>(3 —4v —cosl) — T v(l; V)Rsinﬁ. (10)

Fig. 1b illustrates the detailed crack-tip region of the SSY mesh with initial root radius 2.5 pm. Use of a
very small, initial root radius aids in convergence of the finite-strain analyses.

4.2. Plane-strain SSY model with discrete voids

Fig. 2 shows the introduction of discrete voids into the plane-strain SSY model following the same ap-
proach used by Tvergaard and Hutchinson (2002). The present model neglects the void nucleation process
and includes the voids at the onset of loading. The initially cylindrical voids have prescribed uniform spac-
ing, D, along the crack plane. The initial radius of the voids, ry, together with D, lead to initial void volume
ratios or porosity given by f = n(ro/D)*. Here we analyze f; values of 0.001, 0.0021, 0.0035 and 0.0055 to
span the transition from a single void growth mechanism (i.c., void by void growth) to multiple void growth

Displacement Field for
K and T-stress
Loading

(@)

ittt

Fig. 1. (a) Small-scale yielding (SSY) mesh for plane-strain analyses, and (b) the crack-tip region.
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Fig. 2. (a) Small-scale yielding (SSY) mesh for plane-strain analyses, and (b) the crack-tip region with cylindrical, discrete voids at
spacing, D, along the crack plane.

mechanisms. Tvergaard and Hutchinson (2002) found that for an E/a¢ = 333, n = 10 material with relatively
small f values near 0.001, significant expansion occurs only in the first void (nearest the crack tip). Larger f,
values of 0.0035, for example, lead to significant expansion in multiple voids even at low load levels.

The void spacing, D, and initial root radius at the crack tip, po, remain constant at 100 pm and 2.5 pm,
respectively, for all values of fy. The highly refined meshes around the discrete voids lead to finite element
models containing 25,000-28,000 elements (with one element layer through the thickness). Meshes with this
level of refinement appear necessary to resolve the stress gradients in the voided region. This computational
model clearly reflects a highly idealized microstructure associated with the notion of pre-existing voids
(cylindrical shapes, uniform spacing, uniform f;, etc.). The exploratory nature of this study does not war-
rant, for example, models with random spacing of the voids.

The finite element model does not reflect any discrete features or length-scales of the microstructure asso-
ciated with the inclusions, often much smaller than the voids, that trigger the cleavage fracture process
(inclusion size, shape, strength, orientation; or the grain size, shape, strength, orientation). Rather, we
adopt the stochastic concepts and associated parameters (m,a,, Vo) of the Beremin model to represent
the cleavage mechanism driven by the stress field present in a “smeared” continuum. The finite element
model here provides a high quality, continuum solution for a well-posed, non-linear boundary value
problem of a domain containing initially smooth voids undergoing (large) elastic—plastic deformations
and without loss of stress carrying capacity (no damage) of intact material between the discrete voids. Con-
vergence of the continuum solution with Mode I crack growth by node release and with non-softening con-
stitutive models does not require the specification of an internal length-scale. The interpretation of our
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computational results in the context of the microstructures for a specific steel does require some care. The
present results, for example, appear most applicable to older pressure vessel steels having larger inclusions
(e.g. MnS) that drive the void growth prior to a cleavage event triggered by much smaller (carbide)
inclusions.

Crack growth initiates in the analyses when the void nearest to the crack tip reaches a critical size or
porosity, f.. The very high levels of mesh distortion near the leading voids limit consideration of f; to
the range of 0.05-0.08 in these computations. When the void nearest the crack tip reaches f;, the constraints
applied to nodes along the ligament between the crack tip and first void are removed, with the nodal trac-
tions reduced to zero over 800 load steps without additional external loading. Numerical stability requires
this large number of load steps to remove the tractions—Tvergaard and Hutchinson (2002) encountered
this same difficulty. The crack grows by one void spacing, Aa = D, after release of the first ligament.
The remote loading then increases until the second void reaches f., which triggers release of the second lig-
ament. This process continues until excessive element distortion around the discrete voids prevents further
analysis, or when the additional remote loading (AK) required to grow the next void to f. decreases to zero,
i.e., the crack growth resistance (Jz—Aa) curve becomes flat.

Tvergaard and Hutchinson (2002) use the ratio of the deformed ligament length to the original ligament
length as the criterion to initiate or continue crack growth. Rice and Johnson (1970) and McMeeking
(1977) previously employed this criterion. Our study employs attainment of a critical porosity, f.. This per-
mits direct comparison with Jz—Aa curves computed by traditional computational cell (Gurson-Tvergaard)
models which generally employ a critical porosity criterion for crack growth through element extinction.
The present calculations with the discrete void model reveal the same variety of mechanisms, single void
and multi-void growth, observed by Tvergaard and Hutchinson (2002). However, the focus here lies on
the effects of the growing voids, the resulting stress concentrations, and the ductile crack growth on the
Weibull stress and thus the cumulative failure probability.

h(a)l/m
12 T T T T T T T
Eloy= 500 A
- n°=10 ol = CBJ?h(J)
m =12
fy = 0.0021
1.1+ f. = 0.08 -
D =100pum 3rd void reaches f;
2nd void reaches f \
- 1st void reaches f; ~ -
1.0 \
Model without discrete voids and no tearing
09 -
cVm (MN, m) | clm (kips, in)
V, = 6.452 x 10“m? (L0 n?) | 1784.70 | 142.555
0.8 | | | | | | |
0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

= Do

Fig. 3. Non-dimensional z-function for a moderately hardening material, E/ao = 500, n = 10, with initial porosity, f, = 0.0021, critical
porosity, f. = 0.08, and Weibull modulus, m = 12.
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Fig. 3 illustrates an A-function for a moderate hardening material (E/cq = 500, n = 10) with an initial
void porosity (fg) of 0.0021, critical porosity (f.) equal to 0.08, void spacing (D) of 100 um, and Weibull
modulus (m) of 12 (plotted as 1™ to show the stress concentration and ductile crack growth effect on
o,, and not ¢”). Void growth with no crack extension occurs over a normalized loading, J/Da,
0 — 1.35. In this region, h'" increases above unity due only to the effects of stress concentrations near
the discrete voids. The ridges in the curve at J/Doy ~ 1.35, 1.6 and 1.8 correspond to growth from the initial
crack tip to the first void, from the first void to the second void, and from the second void to the third void,
respectively. Once crack growth occurs, part of the increased Weibull stress (reflected through the A-func-
tion) stems from the increased volume of sampled material. Section 6 provides a detailed discussion of
h-functions for various values of the initial and critical porosities.

4.3. Plane-strain SSY model with computational cells

The discrete model for void growth incurs significant computational cost but does provide details of
stress—strain fields near the voids. Less detailed and less computationally demanding continuum representa-
tions of softening due to void growth have been used extensively, most recently cast into a “‘computational
cell” framework (Xia and Shih, 1996; Broberg, 1994). The Weibull stress values from such models include the
effects of smeared voids on the local stress field and the additional material volume sampled as the crack ad-
vances, but not the local stress concentration effects of the voids. The SSY model shown in Fig. 4 replaces the
detailed representation of discrete voids with computational cells placed along the crack plane (Xia and Shih,
1996). In the present use of this model, each cell consists of a single finite element with a Gurson-Tvergaard
(GT) (Gurson, 1977; Tvergaard, 1990) constitutive model to describe the continuum damage from void
growth. The initial void volume fraction, f;, for each computational cell increases with deformation eventu-
ally leading to a gradual loss of stress capacity. The yield function for the GT model is given by
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2
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Fig. 4. (a) Small-scale yielding (SSY) mesh for plane-strain analyses, and (b) the crack-tip region with computational cell elements
placed along the crack plane.
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Oc

3 m 2 r2
B(Ge, Oy 5, f) = (g)2 +2¢,f cosh (%) ~ (1+4}%) =0, (11)

where g, denotes the Mises equivalent macroscopic stress, o,,, the mean macroscopic stress, &, the Mises
equivalent stress of the matrix material, and f, the current void volume fraction or porosity. To provide
direct comparison with Jz—Aa curves obtained with discrete void models, we calibrate ¢; and ¢, with a sim-
ple least squares procedure to produce the same crack growth behavior of the discrete void analyses in Sec-
tion 4.2. When the average value of f at the Gauss points in a cell element reaches a defined value of f;, the
stiffness of the cell element reduces to zero. The background (non-GT cell) elements have f = 0 and follow
standard J;, flow theory with the uniaxial stress—strain relations in Eq. (8). WARP3D (Koppenhoefer et al.,
2001) implements the GT and automatic cell extinction models within a finite-strain framework (Gullerud
and Dodds, 2000; Ruggieri et al., 1996).

For consistency with the discrete void analyses, the cell model analyses use a cell size of D = 100 um
equal to the discrete void spacing. In the symmetric model employed here, the cell has a height D/2 and
a width equal to D. The crack growth also occurs in increments (Aa) equal to D when the solution proce-
dures remove cells that reach f'= f.. The much coarser mesh of the cell element model limits the resolution
of stress gradients in the crack-tip region that proves critical in the computation of Weibull stress values.
This represents a major drawback of the computational cell approach within the framework to quantify
void effects on cleavage fracture. Howard et al. (Bilby et al., 1994; Howard and Li, 2000) have explored
a “sub-cell” approach to address this issue. This deficiency also leads to the use of gradient theories with
prescribed length-scales (Tvergaard and Needleman, 1995). However, such advanced approaches introduce
additional issues in the modeling (e.g., which physical quantities should be selected for the gradient
averaging).

5. Resistance curves for discrete void and cell models

Fig. 5 illustrates the initial crack-front regions for the smallest (f, = 0.001) and largest (fo = 0.0055) ini-
tial void volume fractions examined in this study. This range of initial porosities captures the two mecha-
nisms of void growth for moderate hardening materials (# =~ 10) in the framework of a plane-strain model
having cylindrical voids. The smaller volume fraction leads to void-by-void (or single void) crack growth
wherein only the void nearest to the current crack tip increases significantly in size with loading. The second
void does not experience significant growth until after the crack extends beyond the first void. The model
with the largest volume fraction exhibits the multiple void growth mechanism wherein multiple voids grow
ahead of the current crack front.

Fig. 6 shows the deformed crack-front regions for the f, = 0.001 and 0.0055 models just prior to release
of the ligament between initial crack front and the first void. In each case, the first void has attained the
critical porosity (fy) of 0.08. The f,=0.001 analysis requires a larger external loading level, J/
Doy = 1.55, to reach critical porosity compared to J/Day = 0.90 for the model with f, = 0.0055. Fig. 6a
and b clearly show the void-by-void (6a) and multiple void (6b) growth mechanisms. In Fig. 6b, the second
void shows substantial expansion that also approaches the critical porosity. The effects on crack-tip open-
ing displacement (CTOD) are also clearly evident as well.

Fig. 7 illustrates the deformed crack-front regions when the second void reaches critical porosity.
Since only the void nearest the current crack tip increases significantly in size for the fo = 0.001 model,
additional external loading to J/Da, = 2.1 becomes necessary to reach the critical porosity. In this mod-
el with f5 = 0.001, extensive element deformation prevents continuation of the analysis beyond /= 0.075
as indicated on the figure. For the f; = 0.0055 model essentially no increase in load becomes necessary
to reach f=f. in the second void, i.e., the load redistribution that occurs during release of the first



3666 J.P. Petti, R.H. Dodds | International Journal of Solids and Structures 42 (2005) 3655-3676

V]
f, = 0.001
JIDsy= 0
T [ ] | |
1/ ]
(a)
VT
f, = 0.0055
JIDo, = 0
1T ] ] ]
T ]
(b)

Fig. 5. Crack-tip regions for the (a) fo = 0.001 and (b) fo = 0.0055 models prior to the initiation of external loading, J/Dao = 0.
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Fig. 6. Deformed crack-tip regions at true scale at critical porosity, f. = 0.08, in the first void for (a) fo = 0.001 and (b) fo = 0.0055 at
J/Day=1.55 and 0.90, respectively. The background material has E/ay = 500, n = 10.
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Fig. 7. Deformed crack-tip regions at true scale at critical porosity, f. = 0.08, in the second void for (a) fo = 0.001 and (b) f, = 0.0055
at J/Dao = 2.10 and 0.90, respectively. The background material has E/gy = 500, n = 10 (f. = 0.075 for the fo = 0.001 analysis).

ligament increases deformation at the second void to the critical value without any additional external
load.

Fig. 8 summarizes the crack growth histories (Jz—Aa) for a series of analyses with discrete voids. The
value of external loading, J/Day, at the critical porosity in each void defines the points shown on the Jz
curves. The crack grows by increments of the void spacing, D, and the J curves have discrete Aa/D values

J=J Doy
3.0 T T T T T T T T T T T
I | D=100um -
E/C, Ei?)o o f. =0.05
- n = -
25 o f,=008
fy = 0.001
20 -
fy = 0.0021
15F -
f, =0.0035
1.0} -
f, = 0.0055
05 -1
0 | 1 | 1 | | | | | | |
0 1 2 3 4 5 6
Aa/D

Fig. 8. Crack growth resistance curves computed with the discrete void model for a moderately hardening material (E/oo = 500,
n = 10) with initial porosities, fo = 0.001, 0.0021, 0.0035 and 0.0055, and critical porosities, f. = 0.05 and 0.08. The applied 7-stress = 0
for these results.
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at 1.0, 2.0, 3.0, etc. Tvergaard and Hutchinson (2002) plot critical values of J/Daq at Aa/D = 0.5, 1.5, 2.5,
etc., corresponding to the use of a critical deformed ligament length and not the critical porosity in the
voids as employed here. Fig. 8§ illustrates the key features of the tearing resistance for the four initial poros-
ities (0.001. 0.0021, 0.0035, and 0.0055) studied here. Smaller initial porosities lead to higher initiation
toughness (more so for f.=0.08) and to higher resistance curves. For the larger initial porosity
fo=0.0055, the resistance curve becomes flat with little or no additional external loading after the initiation
of crack growth.

Fig. 10a shows a representative Jz—Aa curve for a material with greater strain hardening and lower yield
stress. Here, fo =0.0021 with f.=0.08 for a material with flow properties E/so =800, n=5. This
E/ay = 800 value for n = 5 reflects the general trends measured for tensile properties of ferritic steels. A de-
tailed comparison of the void growth histories for the high and moderate hardening material reveals that
higher hardening suppresses growth of voids beyond the one adjacent to the current crack tip, i.e., increased
hardening favors the void-by-void mechanism. The crack growth resistance curve in Fig. 10a illustrates the
increased tearing resistance for higher hardening material that follows from the suppressed growth rates of
voids ahead of the crack tip.

Fig. 10b illustrates the effects of a negative 7-stress on the crack growth resistance curve for the mod-
erately hardening material (E/oq = 500, n = 10). The negative T-stress increases linearly in the analysis with
the remotely applied Kj, T, = ¢K;, where ¢ = —1.57/y/m (—0.25/+/in). Conversion of K; to J and
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Fig. 9. Comparison of discrete void and computational cell crack growth resistance curves for E/cy= 500, n =10, with initial
porosities: (a) fo = 0.001, (b) 0.0021, (c) 0.0035 and (d) 0.0055, and critical porosities, f. = 0.05 and 0.08.
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Fig. 10. Comparison of crack growth resistance curves computed with the discrete void model for (a) high (E/co = 800, n = 5) and
moderately (E/oo = 500, n = 10) hardening material with fo = 0.0021 and f, = 0.08, and (b) negative T-stress effect with E/ay = 500,
n =10, fo = 0.0035 and f. = 0.08.

normalizing by o, leads to T, /gy = §v/J, where § = —0.0572 m/v/kJ (—0.76,/in/kip). For this example,
09 =414 MPa (60 ksi), E=206.9 GPa (30,000 ksi), and v=0.3. At the onset of ductile tearing,
T,/00 = —0.45, and at the last increment of growth (Aa/D = 5), T,/co = —0.68. This solution reflects an
initial and critical porosity, f, = 0.0035 and f. = 0.08. As expected, the negative T-stress loading decreases
significantly the growth rates in the 2nd, 3rd, etc., voids ahead of the crack tip and raises the resistance
curve under increased load as the 7-stress becomes more negative.

Fig. 9 compares the crack growth resistance curves obtained with the discrete void models to those
obtained with the computational cell models. The ¢; and ¢, parameters of the GT constitutive model,
Eq. (11), have values selected to provide the overall best agreement with the discrete model for all initial
porosities. Values of ¢y = 1.7 and ¢, = 1.0 provide quite good agreement for the moderate hardening
material (E/oy = 500, n = 10). For the computational cell analyses, Fig. 9 has the J/Da, values plotted
at the Aa/D values corresponding to the center of each computational cell, i.e., Aa/D = 0.5 when the first
cell reaches critical porosity, Aa/D = 1.5 for the second cell, etc.

6. Effects of voids and crack growth on cleavage fracture
6.1. Effects of initial and critical porosity

The effects of stress concentrations that develop around the growing discrete voids and the additional
volume of material sampled at high stresses with the advancing crack both increase the Weibull stress
values. This leads to an increase in the cumulative probability of fracture through Eq. (2) relative to a
non-voided continuum without crack growth. The comparisons here use the non-dimensional function,
h(j ), from Eq. (6), to quantify the effects of stress concentrations and ductile crack growth. Figs. 11a
and 12a show the increase of A(J) above 1.0 with loading for the moderate hardening material
(E/oy =500, n=10), two initial void porosities (fy = 0.0021 and 0.0055), and two critical porosities
(fe =0.05 and 0.08) for a single Weiull modulus, m, value of 12. Prior to release of the first ligament (ad-
vance of the crack tip), the stress concentrations alone near the growing voids cause /(J) to exceed 1.0.
Subsequent crack extensions through release of the intervoid ligaments lead to the vertical jumps in the



3670 J.P. Petti, R.H. Dodds | International Journal of Solids and Structures 42 (2005) 3655-3676

7 1/m P
1,20 24 x : : : : : 10— S ‘ ‘

[ ] [ - ]
15y m=12| o7 =CBLh(J) 1 sl m=12 = ]
1.10} i I e
1051 =1 osl [ 9u/og =15 |
1.00 Lo Coulog =20 4

L E/o, =500 | ] 0.4} |
0.95F o ]

L 77‘0 = 008 fO = 00021 i L f B |
0.901 ——f,=0.05 D=100um | ] ool A ——1F=0.08 ]
085 n=10 1 A ——1f=005 ,

80l ] J < f, = 0.0 [h(J) = 1.0] ]
0.80 ! ! ! 0 T 1 1 1 1 1 1

0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0

(a) J/Da, (b) J/Da,

Fig. 11. (a) Non-dimensional i-function of Eq. (6) for E/ay = 500, n =10, f, = 0.0021, m = 12 for both f, = 0.05 and 0.08, and (b)
predictions of cumulative failure probability with specified values of ¢,/ao = 1.5 and 2.0.
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Fig. 12. (a) Non-dimensional A-function of Eq. (6) for E/ay = 500, n =10, f, = 0.0055, m = 12 for both f. =0.05 and 0.08, and
(b) predictions of cumulative failure probability with specified values of o,/d5o = 1.5 and 2.0.

h-function curves. At the jumps, the Weibull stress increases from the additional volume of material sam-
pled as the load shifts forward from released ligaments to the following ligaments with no increase of the
external loading. Recall that the Weibull stress values here reflect prior maximum stress values in the
unloaded and released ligaments.

Figs. 11b and 12b show the corresponding impact of increased Weibull stress values on the cumulative
failure probability using the simple two-parameter model in Eq. (2). Construction of the plots requires
numerical values for the scale parameter, o, (o, = o,, when Py = 0.632). Two values are chosen to examine
effects of the A-function at different levels of material toughness. The smaller value of ,/c9 = 1.5 represents
the toughness expected at lower temperatures, i.e., the lower region of the ductile-to-brittle transition
(DBT) curve. The larger value of ¢,/c9 = 2.0 corresponds to material toughness levels in the mid-to-upper
regions of the DBT curve where small amounts of ductile tearing occur prior to cleavage fracture. Figs. 11b
and 12b include the conventional plane-strain, SSY results without voids and growth, 4(J) = 1.0, for com-
parison. In these comparisons, the Weibull stress scaling volume (¥7}) remains at a fixed unit value. The
assigned ¥ value enters the computation of Weibull stress values with and without discrete voids—crack
growth in the same form through Eq. (3) and thus cancels out in the generation of /-function values,
see Eq. (1).
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Fig. 11 shows the A-function and examples of the cumulative failure probability for the f, = 0.0021 anal-
yses. Over 0 < J/Dag < 1.25, the h-function values and cumulative failure probabilities reflect only the
effects of stress concentrations prior to crack extension. For the range of external loading examined with
6o =1.5,h""" ~ 1.0 and no significant difference exists between the cumulative failure probability curves.
Larger differences exist between the cumulative failure probability curves (10-15%) for a,/0¢ = 2.0. Higher
levels of external loading increase £ due to both the stress concentrations and the increase in the volume
of material sampled with release of the first ligament at J/Dagy=1.25 and 1.35 for f, = 0.05 and 0.08,
respectively, and following ligaments. Curves for the larger critical porosity (f. = 0.08) lie slightly above
the curves for f. = 0.05. The additional external loading required to reach f. = 0.08 increases the stress lev-
els near the leading voids thereby causing slight increases in h'". The vertical segments that terminate the
7' and cumulative failure probability curves for the f, = 0.08 analyses indicate steady crack growth, i.e.,
steady crack growth continues to increase the volume of material sampled with no additional external load-
ing (J = constant). The analyses for f. = 0.05 do not reach steady crack growth since excessive element
deformation prevents the analysis from continuing past the critical porosity in the fourth void at
J/Doy = 1.95.

The larger initial porosity, fo = 0.0055, in Fig. 12 leads to higher values of 4" and cumulative failure
probabilities throughout the loading history. A small (<5%) increase in the cumulative failure probability
curve exists due to the stress concentrations when o,/0,=1.5. The increase in external loading for
6.,00=2.0 shows a significant increase in failure probability (~20% compared to <5% for the
fo=0.0021 analyses) for relatively low external loading (J/Day < 0.9). This illustrates an increase in the
stress concentration effect with higher initial porosity. The crack growth resistance curves reach steady
crack growth after the release of the second ligament for the f, = 0.05 analysis and after the release of
the first ligament for the f, = 0.08 analysis. After achieving steady crack growth, the 2"/ and cumulative
failure probability curves continue to increase to 1.0 with no increase in external loading.

Effects of the stress concentrations could be uncoupled from the effects of crack growth through com-
parison of the A-functions for computational cell analyses with the 4-functions for discrete void analyses.
However, concerns arise about the mesh used in the computational cell analyses (Fig. 4) since it contains
relatively large (D x D/2) elements along the crack plane. These large elements reduce the resolution of the
stress gradients in the crack-front region. This stress field resolution proves critical in computing accurate
Weibull stress values. The computed % constants (defines the relationship between the Weibull stress and
external loading, J) derived from the computational cell model are larger than the % values computed with
the highly refined mesh (Fig. 1). This inconsistency between the % constants prevents meaningful compar-
ison with the discrete void analyses.

6.2. Effects of Weibull modulus, m, and flow properties

Figs. 13 and 14 illustrate the effects of a range of typical values for the Weibull modulus, m, on the /-
function and cumulative failure probability for the f, = 0.0021, f. = 0.08 analysis. Increased m values pro-
duce larger values of the Weibull stress at equivalent (remote) loading (see Eq. (3)). Larger m values also
assign a greater relative “weight” to the most highly stressed regions ahead of the crack tip in computation
of the total Weibull stress value. Fig. 13 shows this trend clearly both before and after the onset of crack
extension. Fig. 14 shows the corresponding effects on the cumulative failure probabilities as m increases
from 8 to 16. At m = 8§, the cumulative failure probability shows almost no effects of the concentrations
from void growth and crack extension. At m = 12 and 16, the effects become clearly significant. Note that
the values of ¢,/0, must increase with m—the Weibull stress magnitudes increase with the larger m values
at equivalent J/Da levels.

Fig. 15 shows the effects of a higher hardening material (E/o, = 800, n = 5) on the A-function and cumu-
lative failure probability values for f, = 0.0021 and f. = 0.08. The / values show a gradual increase with
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Fig. 13. Effects of Weibull modulus (77) on the non-dimensional /-function of Eq. (6) for the moderately hardening material, E/
ao = 500, n = 10, with f, = 0.0021 and f. = 0.08.
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Fig. 14. Effects of Weibull modulus (72) on the predictions of cumulative failure probabilities for the moderately hardening material,
E/ao = 500, n= 10, with fy = 0.0021 and £, = 0.08 for (a) m =8, (b) m = 12, and (c) m = 16.
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Fig. 15. (a) Non-dimensional /-function for a high hardening material (E/ao = 800, n = 5), fo = 0.0021, f. = 0.08, and m = 12, and (b)

predictions of cumulative failure probability for ¢,/6o = 2.4 and 3.0.

loading prior to release of the first ligament at J/Doy = 3.1. This trend continues during subsequent in-
creases of load and additional ligament releases. The relatively smooth response (compared to Fig. 11
for the n = 10 material) reflects the single void growth mechanism of this high hardening material. Rapid
increases of 4 values occur in the cases of multiple void growth mechanism (i.e. low resistance curves).
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Fig. 16. Effects of negative T-stress on (a) non-dimensional g-function (constraint) and (b) non-dimensional 4-function for E/aq = 500,

n =10, f, = 0.0021, f, = 0.08, and m = 12, and (c) predictions of cumulative failure probability with ¢,/5o = 1.5 and 2.0.
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6.3. Effects of non-zero T-stress

Application of a negative 7-stress in the SSY model simulates a low constraint fracture specimen (shal-
low-notch SE(B), M(T), etc.). The analysis here examines f, = 0.0035 and f. = 0.08 for the moderate hard-
ening material (E/oo = 500, n = 10). The specified negative T-stress increases linearly with applied K
(T-stress increases with v/J, T,/ay = —0.0572+/J).

The constant, %, is first computed with Eq. (4) using the standard SSY, 7, = 0, model shown in Fig. 1
without discrete voids. By repeating the SSY analysis using the same model and now with the applied neg-
ative T-stress, the g-function follows from Eq. (5) to describe the effect of the negative 7-stress on the Wei-
bull stress values. Fig. 16a shows clearly the significant reduction in the g-function (and thus ¢,,) caused by
the negative T-stress. The negative T-stress and resulting reduction in the Weibull stress values (long dash
curves) lead to a significant drop (~25%) in the cumulative failure probability compared to the 7, =0,
g(J) =1, analysis (short dash curves) even at low a7,/0 values (see Fig. 16c¢).

With € and g(j ) known, the /-function values follow from Eq. (7) and the computed Weibull stress val-
ues from the corresponding analysis with discrete voids. The introduction of discrete voids and the resulting
stress concentrations in the negative 7-stress analysis increases the Weibull stress over the analysis without
discrete voids, as indicated in Fig. 16b when #(J) > 1. At low values of ¢,/a(, stress concentrations from
the discrete voids increase slightly (~4%) the cumulative failure probability over the negative 7-stress anal-
ysis without voids. While at high values of o,/0(, the cumulative failure probability increases significantly
(>20%) in the presence of discrete voids and ductile crack growth.

7. Summary
The following key points summarize the results of this study:

e Initial porosities, fo, ranging from 0.001 to 0.0055 for a moderate hardening material (E/co = 500,
n = 10) capture the transition from a single void to a multiple void growth mechanism within the frame-
work of plane-strain, SSY conditions with zero T-stress.

e Higher hardening materials (E/co = 800, n = 5) or the application of a negative T-stress suppress the
multiple void growth mechanism, thereby increasing the crack growth resistance (Jz) curve.

e Computational cell analyses using the Gurson-Tvergaard constitutive model with calibrated ¢-para-
meters predict accurately the same Jg curves obtained using the discrete void approach.

e The new function, 4(J), quantifies the increase in Weibull stress values caused by the additional volume
of material sampled at high stress levels as the crack tip advances during ductile growth and by the stress
concentrations that arise in material near the discrete voids.

e At equivalent external loading, J/Dg,, increased values of initial porosity (fy) increase the h(j ) values
and cumulative failure probability. This outcome stems from the coupled effect of greater stress concen-
trations due to the larger voids (and reduced ligament lengths) and to an increase in the material volume
exposed to high stresses during small amounts of ductile tearing. Higher f, values lead to increased
amounts of crack growth at a specified J/Day, i.e., flat Jz curves.

e Small values of the Weibull modulus (m = 8) show little effect of the stress concentrations, with increased
effects for larger values of m =12 and 16.

e Higher hardening materials (E/ay = 800, n = 5) suppress void growth and promote a single void growth
mechanism and thus higher Jx curves. The reduced level of stress concentration at discrete voids lowers
the relative Weibull stress values compared to the moderate hardening material at the same level of exter-
nal loading.
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e Plane-strain, SSY analyses including a negative 7T-stress applied proportionally with the external loading
serve to approximate the response of low constraint fracture specimens. Such conditions promote a
single void growth mechanism and higher Jz curves. Here we compute separately the constraint effects
(g-function) due to the 7-stress, and the coupled stress concentration and volume sampling effects
(h-function) due to the discrete voids and ductile crack growth.

e The large element size employed in the computational cell analyses for ductile growth preclude sufficient
resolution of the crack-front stress fields required for accurate computation of the Weibull stress. Com-
parisons here with the Weibull stress values obtained for discrete void models indicate clearly this prob-
lem. Straightforward application of cell analyses to model growth with concurrent computation of the
Weibull stress for cleavage models does not appear realistic.

Future work in this area may include: examination of additional material flow properties and levels of ap-
plied T-stress, interaction between the initial root radius at the crack tip with the size and distance to the
first void, the effects of constraint loss on the void growth process and the Weibull stress distribution using
plane-strain fracture specimens, i.e., compact tension or single-edge notch bend specimens, more sophisti-
cated methods for crack growth to improve the transition from void to void, models with voids arranged
throughout the crack-front region and not limited to the crack plane, and eventually more complex 3D
analysis.
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